
2015.01.20 WIMTK-08: Geometry

Solutions for Final Exam

Instructions: These are solutions: you don’t need instructions

Solution to Problem 1

1. We recall the Frenet-Serret equations

t′ = kn

n′ = −kt − τb
t′ = τn

and we observe by direct calculation that the right-hand side of the Frenet-
Serret equations are equal to the right-hand side of the Darboux equations,
thus demonstrating the equivalence between these two sets of equations.

t ∧ ω = −kt ∧ b = kn

n ∧ ω = τn ∧ t− kn ∧ b = −τb− kt
b ∧ ω = τb ∧ t = τn.

2. We compute the derivative

ω′ = τ ′t + τt′ − k′b− kb′

= τ ′t− k′b + τt ∧ ω − kb ∧ ω
= τ ′t− k′b + (τt− kb) ∧ ω
= τ ′t− k′b + ω ∧ ω
= τ ′t− k′b.

Since t and b are independent, ω′ vanishes if and only if both k′ and τ ′ vanish.
It follows that ω is constant if and only if both k and τ are constant.

For the rest of the exercise we have that k and τ are constant.

3. We have v = β−1ω, where β is constant. Therefore the previous question
implies v′ = 0. Also, we have u = v ∧ n = β−1ω ∧ n = −β−1n′, by the first
question. It follows that n′ = −βu. Finally, u′ = v′ ∧ n + v ∧ n′ = v ∧ n′ =
−βv ∧ u = βn.

4. Let U(s) = cos(βs)u0 + sin(βs)n0. Then U(0) = u0 and U ′(0) = βn0 =
u′(0). Since both U and u are solutions of the second order linear differential
equation u′′+βu = 0, with the same initial conditions, we see that u(s) = U(s)
for s ∈ R.



Alternate solution: We have that v(s) = v0, a constant. This means
that n and u always lie in the plane spanned by n0 and u0. Paying attention
to our orientation we write

n(s) = cos(θ(s))n0 + sin(θ(s))u0

and

u(s) = − sin(θ(s))n0 + cos(θ(s))u0.

The fact that such a function θ(s) exists follows from the fact that n(s) is a
unit-vector field along α. This is demonstrated by Lemma 1 on p. 250.

We find

u′ = −θ′(cos θn0 + sin θu0) = βn.

This implies that θ(s) = −βs + C, for some constant C ∈ R. The initial
condition u(0) = u0 implies C = 0. Therefore we have

u(s) = − sin(−βs)n0 + cos(−βs)u0

= sin(βs)n0 + cos(βs)u0,

as desired, and also

n(s) = cos(βs)n0 − sin(βs)u0.

5. Since t is orthogonal to n, we may write t = au+ bv. Then we observe that
b = 〈v, t〉 = β−1 〈ω, t〉 = β−1τ , which is a constant. Since t is a unit vector, we
have a2 + β−2τ2 = 1, which implies that a = β−1k. Therefore

t(s) = β−1(ku(s) + τv0).

Integrating, we have

α(s) = α(0) +

∫ s

0
t(t) dt

= α(0) + β−1k

∫ s

0
cos(βt)u0 + sin(βt)n0 dt+ β−1τsv0

= α(0) + β−2k
(

sin(βs)u0 − cos(βs)n0 + n0

)
+ β−1τsv0

= (α(0) + β−2kn0) + β−2k
(

sin(βs)u0 − cos(βs)n0

)
+ β−1τsv0

Let p = α(0) + β−2kn0, and let

x(ξ, η) = p+ ξv0 + r
(
u0 sin η − n0 cos η)

be a parameterisation of the cylinder described in the exercise. Then we observe
that α(s) = x(β−1τs, βs) is a curve on the cylinder.
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Solution to Problem 2

1. We compute

yu = xu + εNu

yv = xv + εNv,

and we find

yu ∧ yv = xu ∧ xv + ε(xu ∧Nv +Nu ∧ xv) + ε2(Nu ∧Nv).

Now, if p = x(q), then Nu(q) = dNp(xu), and Nv(q) = dNp(xv), so

Nu ∧Nv = dNp(xu) ∧ dNp(xv) = det(dNp)xu ∧ xv = K(p)xu ∧ xv,

and we obtain the desired quadratic term.
For the term linear in ε, we express dNp in matrix form with respect to the

basis {xu,xv}, so

Nu = dNp(xu) =

(
a11 a12
a21 a22

)(
1
0

)
= a11xu + a21xv,

and
Nv = dNp(xv) = a12xu + a22xv.

Then

xu ∧Nv +Nu ∧ xv = (a22 + a11)xu ∧ xv

= trace(dNp)xu ∧ xv

= −2Hxu ∧ xv,

and we obtain the desired term linear in ε. Thus, putting it together, we have
the desired expression:

yu ∧ yv = (1− 2εH + ε2K)xu ∧ xv.

2. Let Ñ be the normal to y oriented like yu ∧ yv. We observe that yu ∧ yv =
h(xu ∧ xv) with h > 0 implies that Ñ = N . Then

Kxu ∧ xv = Nu ∧Nv = Ñu ∧ Ñv = K̃yu ∧ yv = K̃(1− 2εH + ε2K)xu ∧ xv,

and we obtain the desired expression for K̃.
Similarly, arguing as in the first part, we have

−2H̃yu ∧ yv = yu ∧ Ñv + Ñu ∧ yv,

which expands to

−2H̃(1− 2εH + ε2K)xu ∧ xv = (xu + εNu) ∧Nv +Nu ∧ (xv + εNv)

= −2Hxu ∧ xv + 2εNu ∧Nv

= −2(H − εK)xu ∧ xv,

and we obtain the desired equation for H̃.
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Solution to Problem 3

1. The curve C is a meridian, and is therefore a geodesic of S (p. 255). An arc-
length parameterisation is given by α(s) = (f(s), 0, g(s)). Let w be the parallel
vector field along α such that w(s0) = wp, and let ϕ be the angle between α′(s)

and w(s), so ϕ(s0) = ϕ0. Since α is a geodesic we have
[
Dα′

ds

]
= 0, and likewise,

since w is parallel,
[
Dw
ds

]
= 0. Then it follows from Lemma 2 on p. 251 that

dϕ
ds = 0, and therefore ϕ(s) = ϕ0 is a constant for all s.

2. Let p = x(u0, v0), and let β : s 7→ x(u(s), v0) be a unit-speed parameterisa-
tion of Γ. Since Γ is a circle of radius r = f(v0), it follows that u(s) = s/r.

Since x is an orthogonal parameterisation, we may employ Proposition 3 on
p. 252, which implies that

dϕ

ds
= − 1

2
√
EG

{
Gu

dv

ds
− Ev

du

ds

}
. (1)

In our parameterisation we have

xu(u, v) = (−f(v) sinu, f(v) cosu, 0)

xv(u, v) = (f ′(v) cosu, f ′(v) sinu, g′(v)),

which implies that

2E = f2 F = 0 G = (f ′)2 + (g′)2 = 1.

In particular, Ev = 2ff ′, and Gu = 0, and Equation (1) becomes

dϕ

ds
=

1

2f
2ff ′u′ = f ′(v0)

du

ds
=
f ′(v0)

r
=

cosϑ0
r

.

Integrating, we find

∆ϕ =

∫ 2πr

0

dϕ

ds
ds = 2π cosϑ0.

3. If Γ is a geodesic, then ∆ϕ = 0. This is a direct consequence of Lemma 2
on p. 251, together with the definitions of parallel transport and of geodesics,
and is not particular to our particular context. The converse assertion is not
generally true, but it is in this case.

The previous question shows that ∆ϕ = 0 if and only if cosϑ0 = 0. Since
we have defined ϑ0 ∈ (0, π), it follows that ∆ϕ = 0 if and only if ϑ0 = π

2 .
This means that the tangent planes along Γ are parallel to the z-axis, and this
is a necessary and sufficient condition for the parallel Γ to be a geodesic, as
demonstrated on p. 256.
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